百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Breakthrough in multiphoton upconversion with increased energy conversion efficiency

 

The team has managed to achieve the multiphoton conversion emission with a large anti -Stokes shift and a high energy conversion efficiency over 5%.
The team has managed to achieve the multiphoton conversion emission with a large anti -Stokes shift and a high energy conversion efficiency over 5%.

In the world of nanomaterials, when the “upconversion luminescence” material is excited by low-energy light, it can emit high-energy light, such as ultraviolet light. However, the emission intensity is not satisfied and hence limiting the further applications in different fields. A research team jointly led by the Materials Science and Engineering and Physics departments of City University of Hong Kong (CityU) has proposed a new strategy and successfully achieved upconversion luminescence with high energy conversion efficiency. The team believes that the research result will help further development and applications in miniaturized optoelectronic devices.

Conventional fluorescent materials become fluorescent by absorbing the light with shorter wavelength and higher energy, and then emitting the light with lower energy and longer wavelength. "Photon upconversion" is just the opposite. It refers to the process of absorbing two or more photons with longer wavelength and lower energy, and then emitting light at shorter wavelength and higher energy. It is an anti-Stokes process. One example of this type of luminescence is the conversion of near-infrared light into visible light.

Currently, lanthanide-doped upconversion nanomaterials can convert low energy, long wavelength near-infrared photons into visible ultraviolet photons (high energy and shorter wavelength) through multiphoton process. However, the luminescent efficiency is still limited. One of the solutions is to increase the dopant concentration by doping more optical centers in the host materials. But this will encounter another problem: the high dopant concentration will result in “concentration quenching”, meaning that the more dopant ions are doped, the more energy is dissipated as heat, and the intensity of luminescence is thus less. 

To overcome this challenge, a research team led by Dr Wang Feng, Associate Professor at Department of Materials Science and Engineering and Dr Chu Sai-tak, Associate Professor at Department of Physics at CityU has unraveled a new strategy based on combined use of core-shell strategy and a microring resonator-assisted excitation platform. They have found that the core-shell nanostructured particles can effectively alleviate the concentration quenching and the microring resonator can significantly enhance the excitation, and thus a high energy conversion efficiency over 5% is achieved under excitation at 1550 nm. They further successfully achieved the upconversion luminescence at a very low excitation power (20 μW), converting low-energy, long-wavelength (1550 nm) photons to high-energy, low-wavelength (380 nm) ultraviolet photons, with the anti-Stokes shift of over 1150 nm for micropatterning applications. 

The findings were published in Nature Communications, titled “Integrating temporal and spatial control of electronic transitions for bright multiphoton upconversion”.

A diagram showing the core-shell structure of a nanoparticle, with NaYF4 as the shell and NaErF4 as the core. The diagram on the right shows the multiphoton excitation and emission process.
A diagram showing the core-shell structure of a nanoparticle, with NaYF4 as the shell and NaErF4 as the core. The diagram on the right shows the multiphoton excitation and emission process. 
Luminescence photographs of the core-shell nanostructured nanoparticles doped with different concentration of Er<sup>3+</sup> ions.
Luminescence photographs of the core-shell nanostructured nanoparticles doped with different concentration of Er3+ ions.

The team found that the concentration quenching of individual excited state is dominated by different processes. They also found that using nanoparticles with a core-shell nanostructure as a host, the outer shell of the nanoparticle can effectively reduce the concentration quenching effect. Then they use the microring resonator to successfully improve the excitation efficiency and hence increase the upconversion luminescence intensity, especially the ultraviolet regime.

The microring resonator improved the excitation efficiency and hence increased the upconversion luminescence intensity.
The microring resonator improved the excitation efficiency and hence increased the upconversion luminescence intensity.

“The success in achieving bright upconversion emission by excitation in the wavelength range for optical communication would largely promote practical applications for these nanoparticles, says Dr Wang.

“Many inexpensive and high-performance lasers and optical components can be readily acquired from the mature telecommunications industry. So we believe our findings can help stimulate the development of novel miniaturized optoelectronic devices,” adds Dr Chu.

Both Dr Wang and Dr Chu are the correspondence authors. The first authors are Dr Sun Tianying and Li Yuhua from CityU. Other authors include PhD students Ho Wai-lok, Zhu Qi and Chen Xian, as well as researchers from Harbin Institute of Technology (Shenzhen), Xiamen Institute of Rare-earth Materials, The Hong Kong Polytechnic University, Changchun Institute of Applied Chemistry, and Xi’an Institute of Optics and Precision Materials.

From left to right: Dr Sun Tianying, Dr Wang Feng, Dr Chu Sai-tak and Li Yuhua
From left to right: Dr Sun Tianying, Dr Wang Feng, Dr Chu Sai-tak and Li Yuhua

 

 

 

 

 

 

 

 

 

 

Related Story:

Four CityU scholars awarded HK$23m funding from RGC research fellow schemes

Subscribe to newsletter

Contact Information

Back to top
澳门金沙国际| 玛纳斯县| 威尼斯人娱乐城真实网址| 大发888游戏在线客服| 百家乐官网下注法| 澳门百家乐官网秘积| 博彩太阳城| 现金网开户| 澳门百家乐下三路| 谁会玩百家乐官网的玩法技巧和规则| 真人百家乐官网网站接口| 大发888娱乐场下载zhidu| 百家乐是个什么样的游戏| 老虎机价格| 互博百家乐官网的玩法技巧和规则 | 新锦江百家乐官网赌场娱乐网规则| 百胜百家乐官网软件| 优博网址| 澳门顶级赌场金沙| 百家乐透明发牌机| 网上百家乐赌城| 娱乐城百家乐技巧| 名门国际| 明升国际娱乐| 海王星娱乐网| 临高县| 真人百家乐官网代理分成| 太阳城百家乐官网红利| 百家乐官网稳一点的押法| 百家乐官网网页游戏网址| 百家乐官网棋牌正式版| 赌场风云国语| A8百家乐官网游戏| 大富豪棋牌游戏中心| 威尼斯人娱乐城客户端| 百家乐技巧心| 闲和庄百家乐娱乐平台| 太阳百家乐3d博彩通| 威尼斯人娱乐城地址lm0| 一二博网| 乐天堂百家乐官网娱乐场|